

ESE Capability/Needs Update

Dr. J. C. Duh 301-286-9699 jduh@pop700.gsfc.nasa.gov

Overview

- Background
- Status on the Capability/Needs update
- What is new
- Major differences
- What's next
- How can TST help

Background

- The Capability/Needs Assessment (CNA) was first compiled in 1997 by Barbara Wilson and Jeff Simmonds of JPL. The document was in a word table format, and was signed off by all the HQ science program managers except the Land Cover & Land Use theme manager.
- ESTO took custody of the CNA in 1998, converted it into a searchable database, and posted the database on ESTO Website (http://esto1.gsfc.nasa.gov:591/).
- The CNA has been re-organized following the re-programming of the ESE Science Program (from the original 5 themes to a 7-theme, then to a new 5-theme).
- The CNA was referenced by the IIP NRA, and is being referenced by the ATI and AIST NRAs.

CNA in the Technology Planning Process

Old or New, CNA is Critical

ESTO Technology Planning Database

	Find	Find All	Sort	Category Current Identied by RFI	Record No. 63		
	Science 1	Theme 4. C	GLOBAL WA	ATER CYCLE		<u> </u>	
	Science						
		<u>Measurement Goals & Requirements</u> - global coverage - horizontal res. 10 km or less (ideally 1 km)					
	- revisit ti	- revisit time 1-2 days (New Req?- revisit time: ~ 3 days) - accuracy 10-20% of upper soil layer capacity (may be 1-5 cm water equivalent)					
	- accuracy Issues :						
	- Is there	?					
	- Is there i	Is there science value in improved horizontal resolution (10-30 m instead of 1 km)?Is there need for topographical data for models, and if so, is it covered adequately elsewhere?					
	Measurem	Measurement Approaches					
	Single or versus dr	moist 🗘					
	versus ur	y son					
Ţ					₽	Į	
	Instrumer	nt Requireme	ents		₩		
					H		
	Instrumo	nt Heritage			Ů.		
	mstrume	iit neritage			t.		
	Instrumen	t Option In	n-space, single	e L-band or multi L- & S-band, dual polarization	v		
		(s	single frequen	cy, vertical/horizontal polarization is probably m	inimal to		
		di	iscriminate ef	fects of vegetation from those of soil moisture)		Ţ	
	System R	<u>equirements</u>	Challenges	-1:	<u> </u>		
	- antenna	aperture of nent of multi	i frequency &	chieve req'd spatial res. polarization capability in small, affordable packa	nge L		
	- feasibility of single frequency, single polarization instrument to discriminate effects of vegetation from						
	those of soil moisture (may also need single TIR channel to discriminate surface temp						
	Two competing approaches:						
	- large lightweight inflatable antenna for real aperture approach						
	- deployable antenna (thinned sparse array) and low power correlators for synthetic aperture approach				aperture approach		
	utilizing an array of (1000's of) receivers						
	Subsyste	<u></u> Ô					
					H	ESTO	
					-		

DR. J.C. Duh

ESTO Technology Planning Database

Task	Title				
Task	Description				
					Û
	Nama [In additional in an		
Phor	Name		Institution		
E-ma					
Fun	nding Program		FY to Reach TRL 6		
Fundi	ing Profile (K)	FY 99	FY 00	FY 01	
		Current TRL	TRL 99	TRL 00	
Relate	ed Notional Miss	sion EX-4: Soil Moisture	and Ocean Salinity O	bservating MIssion	
Missi	ion Description				
Missi	ion Implementat	tion Rogin	Mission L	auch	
	sion Duration	non Degin	INITSSION L	audii	STO
Miss	sion Website			Link Mission Si	te

Status on the Capability/Needs Update

- With all the changes in ESE science themes and mission planning, the content of the CNA has not been updated since it was generated.
- An ESE Science & Technology Workshop was convened on July 14-15 to update the CAN. Seven sessions were conducted:
 - Atmospheric Chemistry and Ozone
 - Climate Change and Variability
 - Global Carbon Cycle
 - Global Water Cycle
 - Radiation Forcing and Energy Balance
 - Solid Earth Science
 - Applications
- Each session was chaired jointly by a science and a technology cochair. The co-chairs of these seven sessions agreed to provide detailed update of the needs and capabilities to ESTO by the end of August.

Status on the Capability/Needs Update (Continued)

- **Current Status:**
 - Have received the following:
 - Atmospheric Chemistry
 - Global Water Cycle
 - Climate Variability and Change
 - Global Carbon Cycle (pending a final review)
 - Applications (at this TST)
 - To be received:
 - Radiation Forcing and Energy Balance
 - Solid Earth Science
- A working copy of the FileMaker Pro database is posted on the ESTO Website. Feedback is encourage to be sent to the session co-chairs for inclusion/modification before October 1, 1999.

What is new

- In addition to the needs and capabilities of the 5 scince themes, the following are added to the ESTO Technology Planning Database:
 - ESE Applications Program needs: following the ESE Applications Implementation Plan
 - Derived Needs: following the ESTO Program product lines that provide cross-cutting support:
 - Information System Technology
 - Data Collection
 - Transmission
 - Data & Information Production
 - Analysis, Search & Display
 - Systems Management
 - Infrastructure

What is new (Continued)

- Platform Technology
 - Propulsion
 - Power
 - Thermal
 - Guidance, Navigation & Control
 - Communication
- Healthy growth in the number of needs tracked:

_	Atmospheric Chemistry	29	31
_	Climate Variability and Change	19	30
_	Global Water Cycle 15	16	
_	Global Carbon Cycle (prelim.)	09	28
_	Information System Technology	/	37
_	Platform Technology		40

The total number of needs was 111 before the update. The current 6 out of 9 themes already produced 182 records.

Major Difference

- Interdisciplinary needs will be tracked, e.g.,
 - Diurnal forcing processes, and its interaction with biosphere will be tracked by Atm. Chem. And the Glabal Water Cycle (include **Energy and Radiation)**
 - Volcanic ash and and gas emission will be tracked by Atm. Chem., the Glabal Water Cycle, and Applications.
 - Cold Climate Processes will be tracked by Global Carbon Cycle, Global Water Cycle, and Climate Variability and Change

What's Next

- Complete the capability/needs update and have it officially signed off (By end of October, 1999)
- Populate the inventory and link current technology investment to BMPS (continuous process)

IIP- AIST- ATI

HPCC- NMP- Platform

R&A- Mission- CETDP

SBIR/STTR - Code S funded ES-relevant Technologies

Others

- Conduct independent assessment and gap analysis to identify candidates for future trade and option studies. (by 12/99)
- Implement a new relational database to fully reflect the various manyto-many relationships within the database that FileMaker Pro is not sufficient to handle. (By 12/99)
- Implement a new web-based user interfaces (By 2/00)

What's Next (Continued)

Many-to-Many Relationship

What's Next (Continued)

How can TST Help

- Review the capability/needs for completeness and accuracy, and provide suggestions/comments to the working group co-chairs (ESTO can always forward the suggestion to appropriate program lead)
 - Atmospheric Chemistry: Phil DeCola & Lee Feinberg
 - Climate Variability & Change: Chet Koblinsky & Eastwood Im
 - Global Water Cycle: Eric Wood, Yunjin Kim
 - Global Carbon Cycle: Diane Wickland, Steve Neek
 - Radiation Forcing and Energy Balance: Bob Curran, Steve Sanford
 - Solid Earth Science: Erni Paylor, Shahid Habib
 - **Applications: Lou Walter, Tom Stanley**
 - Information System Technology: Steve Smith, Karen Moe, Glenn **Prescott**
 - Platform Technology: Loren Lemmerman
- Review the inventory for completeness and linkage

How Can TST Help (Continued)

Advise and advertise the ESE Technology Planning Database to make it a useful tool for ESE Technology Program planning

ESTO Program

